window into deep interiors of stars planets
Last Updated : GMT 06:49:16
Arab Today, arab today
Arab Today, arab today
Last Updated : GMT 06:49:16
Arab Today, arab today

Window into deep interiors of stars, planets

Arab Today, arab today

Arab Today, arab today Window into deep interiors of stars, planets

Atmospheric and internal chemistry
Tehran - FNA

New work used laboratory techniques to mimic stellar and planetary conditions, and observe how noble gases behave under these conditions, in order to better understand the atmospheric and internal chemistry of these celestial objects.

The matter that makes up distant planets and even-more-distant stars exists under extreme pressure and temperature conditions. This includes members of a family of seven elements called the noble gases, some of which -- such as helium and neon -- are household names.

The team used a diamond-anvil cell to bring the noble gases helium, neon, argon, and xenon to more than 100,000 times the pressure of Earth's atmosphere (15-52 gigapascals), and used a laser to heat them to temperatures ranging up to 50,000 degrees Fahrenheit (about 28,000 degrees Kelvin).

The gases are called "noble" due to a kind of chemical aloofness; they normally do not combine, or "react," with other elements. Of particular interest were changes in the gases' ability to conduct electricity as the pressure and temperature changed, because this can provide important information about the ways that the noble gases do actually interact with other materials in the extreme conditions of planetary interiors and stellar atmospheres.

Insulators are materials that are unable to conduct the flow of electrons that make up an electric current. Conductors, or metals, are materials that can maintain an electrical current. Nobel gases are not normally conductive at ambient pressures, but conductivity can be induced under higher pressures.

The research team--which included Carnegie's Stewart McWilliams (the lead author), and Douglas Allen Dalton, as well as Mohammad Mahmood of Howard University and Zuzana Konopkova of Deutsches Elektronen-Synchrotron Photon Science in Hamburg, Germany--found that helium, neon, argon, and xenon transform from visually transparent insulators to visually opaque conductors under varying extreme conditions that mimic the interiors of different stars and planets.

This has several exciting implications for how noble gases behave in the atmospheres and interiors of planets and stars.

For example, it could help solve the mystery of why Saturn emits more heat from its interior than would be expected given its stage of formation. This is tied to the ability, or inability, of the noble gases to be dissolved in the liquid hydrogen present in abundance in the interior of gas giant planets such as Saturn and Jupiter.

In Jupiter and Saturn, helium would be insulating near the surface and turn metal-like at depths close to both planet's cores. The change from insulator to metal occurs under pressure and temperature conditions at which hydrogen--the main constituent of these planets--is also known to be metallic. It is predicted that helium is, in fact, dissolved in hydrogen under these conditions on both planets and, furthermore, that the miscibility--or ability of two substances to mix--of hydrogen-helium mixtures is correlated with this kind of insulator-to-metal transformation.

However, there was an observed difference in the behavior of neon between the laboratory conditions mimicking the two gas giants. The team's results indicate that neon would remain an insulator even in Saturn's core. As such, an ocean-like envelope of undissolved neon could collect deep within the planet and prevent the erosion of Saturn's core compared to its neighbor Jupiter, where core materials, such as iron, would be dissolving into the surrounding liquid hydrogen.

This lack of core erosion could potentially explain why Saturn is giving off so much internal heat compared to its neighbor Jupiter. Erosion of a planet's core, as in Jupiter, leads to planetary cooling as dense matter is raised upward during mixing, converting heat to gravitational potential energy, whereas in Saturn denser material is allowed to collect at the center of the planet, producing hotter conditions. The fact that Saturn gives off a great deal of internal heat has been a longstanding mystery. These findings could provide the key to solving it.

Another implication of the team's findings involves white dwarf stars, which are the collapsed remnants of once-larger stars, having about the mass of our Sun. They are very compact, but have faint luminosities as they give off residual heat. Dense helium is known to exist in the atmospheres of white dwarf stars and may form the surface atmosphere of some of these celestial bodies. The conditions simulated by the team's laser-heated diamond-anvil cell indicate that this stellar helium should be more opaque (and conducting) than previously expected and this opacity could slow the cooling rates of helium-rich white dwarfs, as well as affect their color.

"Our findings provide yet another example of the vast array of applications for extreme pressure research," Goncharov said. "Further research could reveal so much more about what's going on in the interiors of these objects that are too distant for us to observe more directly."

arabstoday
arabstoday

Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

window into deep interiors of stars planets window into deep interiors of stars planets

 



Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

window into deep interiors of stars planets window into deep interiors of stars planets

 



GMT 11:40 2018 Friday ,05 January

Zuckerberg makes 'fixing' Facebook a personal goal

GMT 01:05 2014 Thursday ,13 February

Flora

GMT 21:50 2017 Wednesday ,25 October

Abdullah bin Zayed visits WorldSkills Abu Dhabi 2017

GMT 16:33 2017 Tuesday ,04 July

Hany Ramzy happy for positive reactions

GMT 20:11 2018 Wednesday ,05 December

EU wants INF Treaty 'preserved and fully implemented'

GMT 21:01 2018 Sunday ,25 November

Oil prices plummet amid U.S. drilling rigs down

GMT 13:01 2016 Sunday ,28 August

China's Top 500 Firms Report First Revenue Decline

GMT 04:46 2014 Thursday ,11 December

Taliban suicide blast kills 6 Afghan soldiers in Kabul

GMT 11:10 2018 Wednesday ,17 January

MP Hariri welcomes Sho
Arab Today, arab today
 
 Arab Today Facebook,arab today facebook  Arab Today Twitter,arab today twitter Arab Today Rss,arab today rss  Arab Today Youtube,arab today youtube  Arab Today Youtube,arab today youtube

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

arabstoday arabstoday arabstoday arabstoday
arabstoday arabstoday arabstoday
arabstoday
بناية النخيل - رأس النبع _ خلف السفارة الفرنسية _بيروت - لبنان
arabstoday, Arabstoday, Arabstoday